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Abstract—This paper addresses the remote sensing image fusion
problem from the perspective of the analysis sparse model. As
an alternative to the synthesis sparse representation approach,
the analysis sparse model can yield richer feature representations
and better results for image restoration. We, therefore, propose an
image fusion method for remote sensing images based on the anal-
ysis sparse model. In this method, the analysis operators for the
high-resolution multispectral (HR MS) image are trained band by
band, directly from the source images, which can greatly improve
the adaptability. During the analysis operator learning stage, the
geometric analysis operator learning (GOAL) algorithm is utilized
with the upsampled low-resolution MS (LR MS) image and the
HR panchromatic (HR PAN) image, which does not require an
external HR MS image data set. Moreover, the imagery system
modulation transfer function (MTF) is considered during the LR
MS imaging modeling process, which greatly extends the practical
application potential of the proposed method. The simulated and
real-data experimental results on IKONOS and QuickBird data
sets show that the proposed method can effectively preserve the
spectral information and the spatial detail of the image. The fused
HR MS images produced by the proposed method are comparable
and even superior to the images fused by the other state-of-the-art
methods.

Index Terms—Analysis operator, analysis sparse model, image
fusion, inverse problem, remote sensing.

I. INTRODUCTION

IGH-spatial-resolution (HR) multispectral (MS) remote

sensing images are widely used in many application
areas [l], such as land-use classification, change detection,
map updating, disaster monitoring, and so on. However, due to
the fact that sensors always have a physical tradeoff between
the spatial and the spectral resolutions, the remote sensing
image data which are provided by earth observation satellites,

Manuscript received January 14, 2015; revised November 06, 2015; accepted
December 03, 2015. Date of publication January 05, 2016; date of current
version January 28, 2016. This work was supported in part by the 863
Program under Grant 2013AA12A301, in part by the National Natural Science
Foundation of China under Grant 41571362, Grant 61201342, and Grant
61433007, and in part by the Key Laboratory of Agri-informatics, Ministry
of Agriculture, PR. China, Beijing, 100081, China. (Corresponding author:
Hongyan Zhang.)

C. Han, C. Gao, and N. Sang are with the School of Automation, Huazhong
University of Science and Technology, Wuhan 430074, China.

H. Zhang and L. Zhang are with the State Key Laboratory of
Information Engineering in Surveying, Mapping, and Remote Sensing, and the
Collaborative Innovation Center for Geospatial Technology, Wuhan University,
Wauhan 430079, China (e-mail: zhanghongyan @whu.edu.cn).

C. Jiang is with the School of Geodesy and Geomatics, Wuhan University,
Wuhan 430079, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2507859

such as IKONOS, QuickBird, GeoEye-1, WorldView-1, and
WorldView-2, are often composed of an HR panchromatic (HR
PAN) channel and several MS channels with a lower spatial
resolution (LR). Therefore, the remote sensing image fusion
technique is designed to effectively integrate the spatial detail
of the PAN image and the spectral information of the MS image
to acquire the desired HR MS image [2]. The fusion of the
PAN channel and spectral channels is also called “image pan-
sharpening,” and it aims at fully utilizing the complementary
information of the LR MS image and the HR PAN image to
obtain the HR MS image [3]. It is a typical data fusion method,
and we refer to it as “image fusion” in this paper.

In the past few years, various types of image fusion meth-
ods have been proposed to obtain the HR MS remote sensing
images. Many of them, such as intensity-hue-saturation (IHS)
[4], principal component analysis (PCA) [5], and the Gram—
Schmidt (GS) [6] algorithm, are based on a transformation and
substitution strategy. These methods usually consist of the fol-
lowing steps: 1) upsample the LR MS image to the PAN scale,
and forward transform the resampled LR MS image into a cer-
tain new image space; 2) match the histogram of the PAN image
to that of the main component of the new image space, then
replace this component with the newly matched PAN image;
and 3) finally, obtain the fused result by inverse transformation
over the substituted image. These methods can often obtain an
HR spatial quality, but are subject to serious spectral degrada-
tion in most cases. The Brovey transform [7], which is based on
the assumption that the LR PAN image can be considered as a
linear combination of the original MS image, is another popular
image fusion method that has been widely applied. However,
due to the significant difference in the digital number (DN)
values between PAN and MS images, because of their differ-
ent wavelength ranges, the Brovey method often suffers from
spectral distortion.

A number of well-known image fusion methods based on
multiresolution analysis (MRA) [8], [9] have been proposed,
such as wavelet transform [10], Laplacian pyramids [11], and
contourlet transform [12]. Although these kinds of methods
have limitations in keeping the spatial details of the image,
they can effectively preserve the spectral information. Another
MRA method named the coupled multiresolution decomposi-
tion model (CMD), which takes the imagery system modula-
tion transfer function (MTF) into consideration, was recently
investigated in [13]. This new fusion scheme allows the recon-
struction of an HR MS image given its approximation, which is
obtained by MTF-tailored downsampling and wavelet decom-
position.
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In recent years, Li ef al. [14] addressed the image fusion
problem with inverse problem-based methods. However, the
solution of this ill-posed inverse problem is often not unique.
The sparse regularization method, which reflects the inherent
property of the natural signals, is particularly suitable to resolve
this ill-posed inverse problem [15], [16]. In [14], it was sug-
gested that the MS image patches could be sparsely represented
by atoms of a dictionary that was randomly sampled from HR
MS images acquired by “comparable” sensors. Although this
method can acquire competitive results when compared with
the aforementioned methods, it requires training images from
an HR MS image set which may not be available, which lim-
its its practical application. To overcome this problem, Jiang
et al. [17] proposed a joint dictionary learning algorithm based
on compressed sensing theory. Furthermore, the joint dictio-
nary was constructed with the available upsampled LR MS and
HR PAN images to make the image fusion more practical. Zhu
and Blamer [3] proposed a new method named sparse fusion
of images (SparseFI), which involves constructing LR/HR dic-
tionary pairs from the HR PAN image and its downsampled
version. This method explores the same sparse coefficient vec-
tor of the corresponding HR/LR MS image patches over the
coupled HR/LR dictionaries. As external image data sets are not
required for the dictionary learning, this method is considered
to be a promising approach with a broader application potential.
Recently, Jiang et al. [18] proposed a two-step sparse cod-
ing approach with patch normalization (PN-TSSC) for image
fusion. This method exploits the local similarity between the
MS and PAN images, and overcomes the instability of choos-
ing dictionary atoms compared with one-step sparse coding. Li
et al. [19] also recently developed a restoration-based remote
sensing image fusion method with sparse regularization, in
which the dictionary is adaptively learned with the available
source image. Guo et al. [20] proposed an online coupled dic-
tionary learning approach, in which the coupled dictionaries
are iteratively updated with the fused HR MS image. In this
method, the atoms of the constructed dictionary are more rele-
vant to the MS image patches, and lead to a better fusion result.

As mentioned above, the sparse regularization method which
has been utilized in these image fusion techniques is a gen-
erative model known as “synthesis sparsity.” This model has
performed very well in many signal processing applications
[21]-[26]. However, when an overcomplete dictionary with
high mutual coherence is used in the synthesis model [27], [28],
it becomes difficult to determine where a signal may lie under
the synthesis sparsity [29]. Recently, an alternative to the syn-
thesis model named the analysis sparse model was proposed in
[29]-[32]. In this model, all the atoms of the analysis opera-
tor take an equal part in describing the signal, thus minimizing
the dependence on each individual atom, and stabilizing the
recovery process [33]-[36].

In this paper, we propose a novel remote sensing image
fusion method under the analysis sparse model. Compared
with other methods presented recently, the contributions of
our method are twofold. 1) To the best of our knowledge, the
analysis sparse model has not yet been exploited for remote
sensing image fusion, and this is a new attempt in the remote
sensing image fusion domain. 2) In our method, the analysis

operators for the HR MS image are trained band by band,
directly from the available source images, which can greatly
improve the adaptability. During the analysis operator learning
stage, the geometric analysis operator learning (GOAL) algo-
rithm is utilized with the LR MS image and the HR PAN image,
which does not require an HR MS image data set. Furthermore,
in the observation model, the MTF of the imagery system is
taken into account, which greatly extends the practical applica-
tion potential of the proposed method. Two groups of simulated
experiments were carried out with two kinds of satellite sen-
sor data, i.e., IKONOS and QuickBird. A real-data experiment
with an IKONOS data set was also implemented. The image
fusion results were then compared with the results of the other
state-of-the-art fusion methods.

This paper is organized as follows. Section II briefly
describes the inverse problem and the sparse regularization
method. Thereafter, the scheme of the proposed image fusion
algorithm is reported in Section III. In Section IV, the experi-
ments with IKONOS and QuickBird data are described, demon-
strating the effectiveness of the proposed method with respect
to the visual, spatial, and spectral quality. Finally, conclusion is
drawn in Section V.

II. RELATED WORKS
A. Inverse Problem

Many image processing problems can be modeled as lin-
ear inverse problems, including image denoising, deblurring,
inpainting, super-resolution, and so on. In these applications,
the purpose is to reconstruct an unknown image s € R? as accu-
rately as possible from the potentially contaminated measure-
ments y € R", with n < d. For the generic inverse problem, an
incomplete set of linear observations y € R" is available as [37]

y=®s+e (D

where € € R" is the additive bounded noise and sampling
model errors, and ® € R™*? is the observation matrix mod-
eling the sampling process. In many cases, reconstructing the
original signal s by inverting (1) is ill-posed because it admits
an infinite number of solutions (since n < d). However, a sta-
ble approximate solution of (1) can be achieved if we have some
prior information about the underlying object s. Regularization
is a popular way to impose such prior information. The general
regularization model can be written as

1
in |y — ®s||3 + A 2
min o fly — ®s|3 + Ag(s) 2

where the first term is the data fidelity term, and g(e) is an
appropriate regularization (prior) term.

To date, a number of different regularization methods have
been proposed. In [38], Tikhonov regularization with an /o
norm penalty was found to be able to acquire a meaningful
approximate solution and make the inversion less sensitive to
perturbations. However, the ¢5-based norm penalty has a spa-
tial smoothing effect on the solution, which can lead to the loss
of meaningful features [39]. The basis pursuit framework pro-
posed by Donoho [40] and the ¢;-regularization proposed by
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Tibshirani [41] provide alternative sparse methods for signal
recovery. Compared with the ¢5-based regularization meth-
ods, the sparse regularization method with /;-regularization
can more effectively preserve sharp edges, which is vitally
important in image processing applications [42]. According
to the terminology of [37], sparse ¢;-regularization can be
divided into an ¢;-synthesis prior and an ¢;-analysis prior. In
the following part, we briefly review these two models.

B. Synthesis and Analysis Sparse Models

During the last decade, the synthesis sparse representation
model has established itself and has led to state-of-the-art
results in many image processing areas. In the synthesis-based
model, signal s € R? is sparsely represented over a given dic-
tionary D € R¥*  with d < k when it is composed of a
linear combination of only a few of the atoms from dictio-
nary D. Thus, the image signal can be represented as s = D«.
The sparse representation task is formulated as the following
minimization problem:

& = argmin ||allp s.t. |y — ®Da3 <e¢ 3)
o4

where « is the vector of the sparse coefficients, with most of the
coefficients being close to or equal to zero, and it matches the
measurements up to a specified tolerance of . Since problem
(3) is NP-hard [43], it is often typically relaxed as

. 1
& = argmin §||Y—<I>Doc||§+)\\|cx||1. “4)
x

It then becomes an ¢;-norm constrained convex optimiza-
tion problem, where A is a suitable regularization parameter.
Many different kinds of ¢;-norm optimization methods have
been proposed in the last few years [44].

Recently, as a new sparse representation approach, the anal-
ysis sparse model has been proposed and is gradually attracting
researchers’ attention [30], [31]. Suppose that the suitable 2 €
RP*4 for noise-free training of s, whose rows constitute anal-
ysis atoms, is a linear analysis operator. The sparse coefficient
vector &« € R? can then be approximated as o = 2s, which
with/zero elements is as sparse as possible [30]. It can be
formally expressed as the following optimization problem:

Q € argmin g(Qs) 3)

where €2 is subject to certain constraints, and g(e) is the
function that measures the sparsity of the matrix €2s.

In the analysis sparse model, the signal information is
encoded in the zero entries of o. The number of zero elements
in the coefficient vector, i.e., | = p — ||al|p, is called the co-
support of the signal [31]. This implies that there is a subset A
of the rows of €2, the co-support €2, such that [45]

Qps = 0. (6)

The subspace is spanned by the rows of €2, to which
s is orthogonal. Geometrically, s lies in the intersection of
all the hyperplanes whose normal vectors are in the set of

the co-support. The issue of recovering s from the corrupted
measurements is conducted by solving the following generic
minimization problem [31]:

§=argming(s) st |ly—Pslla<e (7

where g(e) is the sparsity-promoting function, and € € RT is
an estimated upper bound on the noise power.

According to the theoretical basis in [30], the following
optimization problem is a special case of (7):

§=argmin||Qs|lop st |y — ®sllz <e. 8)
S

In addition, the solving of problem (8) is an NP-complete
problem [46], and thus an approximate solving method is
required. Many approximate solving methods have been pro-
posed in recent years. One option for approximating (8) is to
use a greedy strategy, such as greedy analysis pursuit (GAP)
[30], analysis iterative hard thresholding (AIHT), analysis hard
thresholding pursuit (AHTP), analysis compressive sampling
matching pursuit (ACoSaMP), analysis subspace pursuit (ASP)
[47], [48], and so on. Another way is to use ¢;-relaxation to
approximate (8). The analysis ¢;-minimization, which replaces
the ¢ with ¢; in (8), is well known and has been widely applied
in practice.

In [32], Yaghoobi er al. utilized a convex {;-norm, i.e.,
g(Q2s) = ||Qs||1, as the sparsity-promoting function, and the
uniformly normalized tight frame (UNTF) constraint for the
analysis operator was exploited to solve problem (5). The
trained operator by this algorithm has been applied to natural
face image denoising. In [35], Have et al. proposed an analysis
operator learning algorithm called GOAL, which exploits the
constraint of full-rank matrices with normalized columns. The
conjugate gradient method on manifolds is utilized to solve this
optimization problem. The experimental results for the clas-
sic image restoration problems have shown the competitive
performance of GOAL when compared with the other state-
of-the-art techniques. Thereafter, Worman et al. [49] applied
this operator learning model to image reconstruction based
on blind compressive sensing, and also achieved a desirable
result. Chen et al. [50] proposed a bi-level training approach
for analysis operator learning, which is effectively solved with
the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton method (L-BFGS). This method excludes the trivial
solution of the analysis operator without imposing any addi-
tional constraints, and has also obtained desirable results.

IIT. PROPOSED IMAGE FUSION SCHEME

For image fusion, the goal is to recover an HR MS image
from a single HR PAN image and its corresponding LR MS
image. This means that we are increasing the spatial resolution
of the LR MS image while keeping its spectral information with
the help of the HR PAN image.

A. Observation Model

First of all, we need to build the observation model which
establishes the mathematical relationship between the desired
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HR MS image and the observed LR MS image and HR PAN
image. According to [14], the observed LR MS image can be
modeled as a decimated, blurred, and noisy version of the cor-
responding HR MS image. Considering the MTF of the satellite
imagery system, the linear degradation model between the HR
MS image and the LR MS image is formulated as

Y,.=LFS+v, ©)

where Yy, € RBAW and S € RP*BHW are column vectors
representing the lexicographically reordered LR MS image
and HR MS image, respectively, with B, H, and W repre-
senting the number of bands, the height, and the width of
the LR MS image, and p being the spatial resolution ratio
between the low-resolution MS image and the PAN image. F €
RP*BHWxp* BHW renresents the MTF-tailored low-pass filter
for the HR MS image, L € RBHWx0*BHW denotes the deci-
mation operator, and v; € REHW is the noise vector. Usually,
the MTF is bell-shaped, and its magnitude value at the cutoff
Nyquist frequency needs to be much lower than 0.5 to pre-
vent aliasing [11]. We denote M; = LF € RBHWXP2BHW,
and then (9) can be rewritten as

Yis =MiS+ vy (10)

As we know, the range of the wavelength spectrum of the
PAN modality is usually overlapped or partly overlapped with
the MS image. This overlapping characteristic suggests that the
HR PAN image can be approximated as a linear combination
of the desired HR MS image [14]. The linear model can be
modeled as

B
Ypan = Zgbsb + Vg = MsS + vy
b

(1)

where Ypan € RPPHW and SP S RPPHW represent the lexi-
cographically reordered version of the PAN image and the bth
band of the HR MS image, respectively, and 6° is the weight
of the bth band. My € R HW*P*BHW g the linear combi-
nation matrix which denotes the spectral response of the dif-
ferent remote sensors. vy € RP*HW s the additive zero-mean
Gaussian noise. The parameters 6 and M, are determined
by the specific satellite sensors. Recently, Xavier [9] proposed
an @° parameter estimation technique that takes into account
the physical electromagnetic spectrum responses of the sensors
during the procedure of image fusion. In this paper, we use
Xavier’s method to estimate parameter 6°.

Equations (10) and (11) can then be incorporated by the
following formulation:

Y=MS+v (12)
| Yuys (B+p*)HW | My
whereY—[/B*YPAN}GR and M = 8% M,

2 2
¢ R(B+7*)HWxp*BHW represent the measurement vector

and the observation matrix, respectively. In addition, v €
2

R(B +p% ) HW is the model noise. Clearly, the factor 3 is used as

a tradeoff parameter to balance the relative contribution of the

LR MS image and the HR PAN image to the final result of the
image fusion [15], [17]. In the experimental part, we investigate
the influence of parameter 8 on the results.

It can now be observed that (1) and (12) are surprisingly sim-
ilar. Therefore, the remote sensing image fusion problem is a
typical ill-posed inverse problem. As shown in Section II, the
goal is to recover S from Y with the regularization method,
and the analysis sparse model is applied to solve this problem
here.

B. Image Fusion Scheme Based on the Analysis Sparse Model

According to sparse regularization theory, the original sig-
nal can be accurately reconstructed from a set of incomplete
measurements. Thus, the remote sensing image fusion problem
of (12) can be formulated as an analysis sparse minimization
problem

S = argming(®S) + A |Y — MS|)3 (13)
S

where © € RP*P*BHWig the analysis operator for the entire
image S, and the analyzed vector can be written as y = @S €
RP. g(e) is the analysis sparsity-promoting function, which
promotes the product of the vector S and analysis operator ®
to be the sparsest.

To reduce the computational burden, a patch-wise processing
strategy [51] is adopted for the proposed method in this paper.
That is to say, the algorithm is carried out patch by patch, and
the final desired HR MS image can be synthesized from all the
fused HR MS image patches. We denote the height and width
of the LR MS image patch as h and w, respectively. To avoid
any confusion, the patches of the desired HR MS image and the
observations are represented by the lower case s € RP*Bhw ang
y € R(-*+B )hw, and the analysis operator ® is substituted by
Q € RPP*Bhw  which is the analysis operator for the image
patches. For the purpose of continuity, the definition and the
construction of the analysis operator € is explained later in
Section III-D. We can obtain the unconstrained optimization
model for image fusion with respect to the image patches as
follows:

§ =argming(Qs) + A |ly — Ms|3. (14)

Herein, M € R(p2+B)thszhw, consisting of M; €
RBRwxp®Bhw anq M, € RP*hwxp’Bhw represents the patch-
level observation matrix, and A € RTbalances the sparsity of
the solution’s analysis coefficients and the solution’s fidelity
to the measurements. To measure the sparsity of the analyzed
patches, a differentiable sparsity-promoting function is adopted

g(Qs) = log(1+ pu(Rs),”)

j=1

5)

where p is a positive weighting factor, which serves as an
appropriate sparsity measure, and p is the number of elements
in the analyzed vector €2s.
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The proposed reconstruction algorithm can be solved based
on the conjugate gradient method. The solution is iteratively
updated by

s+ = (0 4 570 (16)
where the scalar o is the step size, and s®and A are the local

image patch vector and the descent direction at the ith iteration,
respectively. We define

p
f(s) = log(l+p(Rs)}) +Ally — Mss.
i=1

a7

Let g := Vf(5()) be the gradient of the cost function at
the ith iteration

g0 =3 ——— M (M7 —y) . ()
=1 1+p (QS(”) .

J

The descent direction can be initiated with #(?) = —g(®) The
Hestenes—Stiefel formula shown in [52] is given by

(9) " (h)

HSY =
(d®)" h)

19)

where R = gli+1) — ¢(0) and A —

fori=1
fori>2

7
{g(‘) oo . The new search direction
—g® 4+ g8 qli—1)
is computed by
RO = — g+ 4 gg®g@), (20)
The step size o is computed by backtracking the line search.
In the subsequent iterations, the backtracking line search is ini-
tialized by the previous step size divided by the line search
parameter, i.e., 0, = U;’;; L where 7 is a certain constant. In
our implementation, the line search parameter is set as n = 0.9.
The relative variation of the estimated fusion images in two

o (@) _gli=1)
consecutive iterations is set as § = ||>—z=5—||. The threshold

0 < 0.01 is set as the stopping criterion.

C. Patch-Based Processing Strategy

Because of the huge computational load for a whole image
[51], we adopt a patch-based processing strategy in the pro-
posed method. The remote sensing images utilized in this study
were IKONOS and QuickBird data sets, whose spatial resolu-
tion ratio p between the LR MS image and the PAN image is
4. We set the size of the image patch in the HR MS images
as 8 x 8 x 4, which corresponds to an 8 x 8image patch in the
PAN image and a 2 x 2 x 4 image patch in the LR MS image.
Therefore, the decimation operator matrix L € R16%256 jp (9)
can be constructed as [14], [17]

L= ((1/16) x Isxs @ (17 @ (Inxo ® 17))) (21

[[o]=]

=

=
~
X
—_

PAN jnfage

HR MS

Fig. 1. Correspondence of the image patches.

where 1 is a 4 x 1 vector with all entries equal to one, and
Is«sand I« o are diagonal matrices whose elements on the pri-
mary diagonal are ones with the size of 8 x 8 and 2 x 2, respec-
tively. ® represents the Kronecker product operator, details
of which can be found in [14] and [17]. The MTF-tailored
low-pass filter F € R?56%256 can be formulated as

FBlue
FGTeen
FRed
Fnir

(22)

where F gjye, Fareens F red, and F y 7€ R4%64 represent the
MTF-tailored low-pass filter matrix for the blue, green, red, and
near-infrared bands with different cutoff frequencies, respec-
tively, where the optical point spread function (PSF) is assumed
to be a Gaussian kernel with the support size of 5 x 5.

The matrix My € R4%256 jn (11) can be written as

My = (01 - Tsaxea 02 - Tsaxea 03 - Tgaxea Oa - Toaxea) (23)

where T € R64%6% js a 64 x 64 diagonal matrix with elements
equal to one. The correspondence relationship between the LR
MS image patch and the HR PAN image patch is illustrated in
Fig. 1.

As can be seen from Fig. 1, all of the image patches (PAN
and MS image patches) are processed in raster-scan order, from
left-top to right-bottom. In the PAN image, the scan step size
is four pixels, which corresponds to one pixel in the LR MS
image. Therefore, the overlapped size of the HR MS image
patch is 4 x 4. As shown in Fig. 1, the observed image patch y,
which is an 80 x 1 column vector, is composed of four 4 x 1
column bands of LR MS image patches and one 64 x lcolumn
PAN image patch. The overlapped pixels of the image patches
are counted when the HR MS image patches are reconstructed.
Finally, the HR MS image is synthesized by averaging the
overlapping image patches.

D. Analysis Operator Learning

The ability of sparse representation for a certain class of sig-
nals is the key to its application [35], [53]. For the analysis
sparse model, this ability depends on the subspace precision
of the analysis operator. In this study, the analysis operator
for image fusion must have the capability of simultaneously
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carrying spatial and spectral information. Therefore, the anal-
ysis operator €2, for the bth band (£2; can also be represented
with Qreq, Qareens LBiue, and Qi for the red, green, blue,
and near-infrared bands, respectively) is trained separately with
training samples that are composed of the PAN image patches
and the upsampled MS image patches.

We take the operator 2r.q for the red band as an exam-
ple to illustrate the construction of the analysis operator for
the MS image. The PAN image and the upsampled red band
image are cropped into image patches with the size of 8 x 8.
We then choose 5000 image patches randomly from the PAN
image and the upsampled red band image, respectively. These
10 000 image patches are then collected as the training samples
for the analysis operator learning of the red band image.

Assuming we have a set of K training samples
{sk € RM}kK:l (where K = 10000), the goal of analysis
operator learning is to find the suitable matrix Qpg.q € RP*64
with p > 64, which leads to the analyzed vector pg.qSg
being as sparse as possible for the training sample sj.
Therefore, the analysis operator for a given set of image

patches {sk € R64}kK:1 is formally denoted by
QRreq € arg minz 12Reask|, (24)

Obviously, this is nonconvex and discontinuous, and it is dif-
ficult to obtain the optimal solution. One tractable approach is

to replace it with a smooth approximation function. Therefore,
the {y—pseudo-norm in (24) can be replaced by

K p

QReq € arg minz Z log(1 + pu(Reas)i ;)
k=1

(25)

which is a smooth log-square function [54], where k represents
the kth training sample. Similar to the log-sum sparsity mea-
sure proposed by Candes et al. [55], when p reaches an infinite
value, the log-square function in (25) tends to a constant which
is a good approximation of ¢y-sparsity.

For problem (24), without additional prior assumptions on
Qreds Qreq =0 is the global minimum solution. To avoid
this kind of trivial solution, we impose certain constraints on
QReq. One direct constraint is that the rows of £ z.4 have unit
Euclidean norm. This means that we can restrict the transpose
of the analysis operator to a manifold structure, which is known
as an oblique manifold [56]

OB(64,p) := {x € RO4*P|rk(y) = 64, ddiag (XTx) =1,}.
(26)

Here, we assume that y = xTyx, ddiag(y) is a diagonal
matrix whose entries on the diagonal are those of y. rk(x) rep-
resents the rank of the matrix y. Since we require the rows of
Q Rreq to have unit Euclidean norm, we restrict Qged to be an
element of OB(64, p). We then enforce the full-rank constraint
with (27) on the analysis operator 2.4 [35]

1
h(QRed) = log det <p9£edQRed> .2

1
~ 64log(64)
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Fig. 3. IKONOS images. (a) Degraded MS image at a 16-m spatial resolution.
(b) Degraded PAN image at a 4-m spatial resolution.

The mutual coherence of the analysis operator can be con-
trolled via (28) [35]

r(Qpea) =~ Y. log (1—(w3;wj,:)2> (28)

1<i<j<p

where w; and w; represent the transpose of the ith row and
jth row of Qpcq. This constraint can ensure that the analysis
operator does not have linear dependent rows. Combining (15),
(25), (27), and (28), the cost function of the analysis operator
learning can be expressed as

K
= arg min g (Qpgeask) + k1 - h (Qrea)
Q%_,c OB(64,p) 7

+ 11 -7 (QRed) -

QRed :
(29)

The conjugate gradient on the oblique manifold is employed
to solve the optimization problem (29) [35]. The parameters k;
and p; influence the condition number and the mutual coher-
ence for the analysis operator. For an in-depth introduction to
the GOAL method, we refer the interested reader to [35].

In this study, by setting p = 128, the initial matrix Qp.q,is
generated randomly with the size of 128 x 64, and the entries
of the matrix are random numbers between O and 1. After
solving (29), the optimal analysis operator 2.4 for the red
band is obtained. In this way, the analysis operators Qg een,
Qpye, and Q gk, which correspond to the green, blue, and
near-infrared bands, respectively, can be constructed.
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Fig. 4. Results of the image fusion with the degraded IKONOS image. (a) Original. (b) GIHS. (c) AWLP. (d) GS. (e) SparseFI. (f) PN-TSSC. (g) Proposed

method.

(@) (b)
©) ®

(d)

©
(®

Fig. 5. Close-ups from Fig. 4. (a) Original. (b) GIHS. (c) AWLP. (d) GS. (e) SparseFIL. (f) PN-TSSC. (g) Proposed method.

In this linear transformation system, the matrix {2 can be
formulated as the direct sum of these four operator matrices

4
Q= b6_31 Qp = QBrue © Lgreen © QRred © LR

QBlue
QGreen
= . 30
ﬂRed ( )
QNir

With the operator €2, the analyzed vector of the fused MS
image patch can be represented as
QBlue SBP
QGreen
QRed
Qnir

Sagp

=Qs @3

SrRP
SNp
where « is the sparse coefficient of the MS image patch,

and spp, sgp, Srp, and syp are column vectors represent-
ing the lexicographically reordered MS image patches for the

blue, green, red, and near-infrared bands, respectively. This also
implies that « has the sparsest representation of the remote

sensing image patch at a given overcomplete analysis operator
Q) ¢ R512x256_

E. Flowchart

The scheme of the proposed image fusion method is illus-
trated in Fig. 2.

The whole procedure of the proposed remote sensing image
fusion scheme can be divided into two stages: 1) the analysis
operator learning stage; and 2) the image fusion stage. First,
the resampled LR MS images and the PAN image are randomly
abstracted into image patches. These image patches are then
exploited for training the analysis operators by solving (29).
Second, during the image fusion stage, the HR PAN and the
LR MS image patches are jointly stacked as the y measure-
ments. By solving (14), the HR MS image patches are obtained.
Finally, all the obtained HR MS image patches are synthesized
as the desired HR MS image.
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TABLE 1
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT SHOWN IN FIG. 4

GS GIHS AWLP SparseFI PN-TSSC Proposed

B 0.9128 0.9257 0.9440 0.9372 0.9481 0.9490

G 0.9136 0.9314 0.9507 0.9448 0.9544 0.9652

CcC R 0.9000 0.9235 0.9430 0.9375 0.9456 0.9597
NIR 0.9095 0.8968 0.8720 0.9058 0.9179 0.9275

Avg 0.9090 0.9193 0.9274 0.9313 0.9415 0.9503
B 25.0405 27.8421 20.5372 21.3120 19.1888 18.9910
G 24.9956 27.2382 19.3278 20.0953 18.1256 15.9294

RMSE R 27.1059 28.4827 21.1962 21.5845 20.0468 17.4291
NIR  20.2932 27.0878 29.6334 21.0680 19.5106 19.1536
Avg  24.3588 27.6627 22.6736 21.0150 19.2180 17.8758

B 0.9153 0.9098 0.9433 0.9256 0.9398 0.9411

G 0.9206 0.9138 0.9505 0.9343 0.9469 0.9583

SSIM R 0.8977 0.8941 0.9391 0.9243 0.9348 0.9490
NIR 0.9381 0.9406 0.8975 0.9302 0.9408 0.9422

Avg 0.9179 0.9146 0.9326 0.9286 0.9406 0.9476

SAM 10.1552 8.1511 7.5478 8.1723 8.1345 7.3476
ERGAS 6.3619 7.0508 5.05911 5.3395 4.8799 4.4850
Ox 0.6987 0.7294 0.7360 0.5802 0.6861 0.7701

IV. EXPERIMENTS AND DISCUSSIONS
A. Experimental Setting

To evaluate the effectiveness of the proposed method, we
adopted Wald’s protocol, which states that a synthetic image
should be similar to the image that the corresponding sensor
would observe at the highest spatial resolution [57]. We car-
ried out two groups of simulated experiments with two kinds
of satellite sensor data, i.e., QuickBird and IKONOS, and a
real-data experiment with an IKONOS data set. To quantita-
tively assess the quality of the simulated experiment results,
we need a ground-truth image as the reference. A common
method for this is to degrade the original PAN images and the
MS images into an inferior resolution level. The experiments
are then performed on the degraded images, and the original
MS images are selected as the real HR images to compare with
the fused images. During this stage, the MTF variation of the
imagery system should be taken into account in the simulated
experiments. Referring to [19], we obtained the degraded MS
image by filtering the original MS image with MTF-tailored
low-pass filters and then downsampling by a factor of four. The
approximated Gaussian filters with different Nyquist cutoff fre-
quencies simulate the MTF of satellites. The Nyquist cutoff
frequencies of QuickBird and IKONOS for different spectral
bands are provided in [19] and [58]. The cutoff frequencies
for the blue, green, red, and near-infrared bands are around
0.34, 0.32, 0.30, and 0.24 for QuickBird and 0.27, 0.28, 0.29,
and 0.28 for IKONOS, respectively. The degraded PAN image
was also generated by an MTF-tailored low-pass filter with
a cutoff value of 0.17 for IKONOS and 0.15 for QuickBird,
respectively.

The common evaluation methods for image fusion results
consist of two aspects: 1) visual inspection and 2) quantitative
evaluation. For the quantitative evaluation, the following typi-
cal evaluation indexes were utilized: the correlation coefficient
(CC) [59], the structural similarity metric (SSIM) [60], and the

Fig. 6. Input QuickBird images. (a) Degraded MS image at an 11.2-m spatial
resolution. (b) Degraded PAN image at a 2.8-m spatial resolution.

root-mean-square error (RMSE). These indexes were calculated
for each band between the fused MS images and the original
reference MS image. A small value of spectral angle mapper
(SAM) [59] and the erreur relative globale adimensionnelle de
synthese (ERGAS) [61] indicates good fusion results. The (4
quality index is a generalization for four-band images of the Q
index [60], [62], which is a specific index known as the univer-
sal image quality index (UIQI) that was proposed in [59]. The
Q@4 index gives values in the range of [0, 1], with 1 being the
ideal value.

Another quality measurement protocol which does not
require an HR reference MS image is called the quality not
requiring a reference (QNR) index, which was proposed by
Alparone et al. [63]. The results of the real experiments were
confirmed quantitatively in terms of QNR, D), and D;. The
spectral distortion D) is calculated as follows [63]:

=

-1

2
D= 51 2

1 k=1
X |Q(MSlow,b7MSlow,k) - Q(MSbaMSk)|

B
b=

(32)
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where B is the number of bands of the MS image, and M Sjoq, 5
and MSy(be {1,...., B}) are the bth low-resolution and
sharpened MS bands, respectively. Q is the UIQI index.

The spatial distortion Dy is calculated as follows:

B
1
D, = B bz:; |Q(M Siow, b, PANiow) — Q(M Sy, PAN)|
(33)

where PAN and P AN, are the full-resolution and downsam-
pled PAN images, respectively. Then, taking into account the
spatial and spectral distortion, the QNR is written as [63]
QNR = (1= Dy)(1 - D) (34)

We compared our image fusion results with several typical
fusion methods: the traditional GS method [6]; the generalized
IHS (GIHS) method [4]; and the additive wavelet luminance
proportional (AWLP) approach [9], which was implemented
via a two-level pyramidal decomposition. Two state-of-the-art
sparse regularization based methods were also used: SparseFI

(2

Fig. 8. Close-ups from Fig. 7. (a) Original. (b) GIHS. (c) AWLP. (d) GS. (e) SparseFIL. (f) PN-TSSC. (g) Proposed method.

[3] and the two-step sparse coding with patch normalization
(PN-TSSC) method [18].

To obtain the analysis operator for the MS images, the con-
crete values of k; and p; in (29) were empirically set as
k1 = 40 and iy = 1000, which led to the optimal analysis oper-
ator in this experiment. In addition, the parameter y in (25)
was set as p = 10 for all the experiments in this paper. The
parameter X in (14) was set as A = 2.8 x 10° for IKONOS
and A\ = 2.9 x 10* for QuickBird, respectively. For 3 in (12),
we empirically set it as § = 0.075 for IKONOS and 5 = 0.8
for QuickBird. The weights in (11) was set as follows [19]:
1) ' =0.1071, 6% = 0.2646, 6> = 0.2696, and 0* = 0.3587
for IKONOS; and 2) §' = 0.1139, 2 = 0.2315, 6% = 0.2308,
and #* = 0.4239 for QuickBird.

The optimal size of image patch for the LR MS image was
9 x 9 for the SparseFI method, and we chose an image patch
size of 7 x 7 for the PN-TSSC method. The overlapping area
size was set as 9 x 4 pixels for the SparseFI method and 7 x 4
pixels for the TN-TSSC method, respectively. The size of image
patch and the parameters for the other methods were set as
recommended. For the SparseFI and PN-TSSC methods, the
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TABLE II
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT SHOWN IN FIG. 8

GS GIHS AWLP SparseF1 PN-TSSC Proposed
B 0.9429 0.7923 0.9458 0.9464 0.9455 0.9605
G 0.9550 0.9613 0.9485 0.9595 0.9612 0.9683
CC R 0.9537 0.9633 0.9508 0.9597 0.9611 0.9693
NIR 0.9542 0.9594 0.9544 0.9614 0.9655 0.9687
Avg 0.9515 0.9191 0.9499 0.9568 0.9583 0.9667
B 11.2778 20.6586 10.3649 10.3966 10.3997 8.8923
G 21.2271 21.4900 20.8534 18.7767 18.1458 16.4458
RMSE R 22.3163 22.0130 21.4588 19.7404 19.0814 17.0241
NIR 29.3940 29.3254 29.1024 27.3347 25.3993 24.2778
Avg 21.0538 23.3717 20.4449 19.0261 18.2566 16.6600
B 0.9813 0.9485 0.9832 0.9813 0.9822 0.9855
G 0.9582 0.9610 0.9544 0.9585 0.9611 0.9665
SSIM R 0.9517 0.9564 0.9511 0.9542 0.9564 0.9630
NIR 0.9295 0.9247 0.9286 0.9270 0.9395 0.9443
Avg 0.9552 0.9476 0.9544 0.9553 0.9598 0.9648
SAM 2.0948 2.4099 1.8639 2.0943 2.0059 1.8164
ERGAS 1.8621 2.0169 1.8120 1.6873 1.6090 1.4711
O 0.8367 0.8130 0.8304 0.8089 0.8477 0.8718
regularization parameters were set as 16 384 for IKONOS and os7 o]

8192 for QuickBird, respectively.

B. Experiments With IKONOS Data

The IKONOS system simultaneously offers a four-band MS
image with a 4-m resolution and a single-band PAN image with
a 1-m resolution. Fig. 3(a) and (b) shows the LR MS image
with a resolution of 16 m and the PAN image with a resolu-
tion of 4 m, respectively. The original MS image with a 4-m
resolution was used as reference. In this study, we utilized a
simulated IKONOS LR MS image with the size of 64 x 64 and
a corresponding PAN image with the size of 256 x 256.

The GS algorithm was implemented in ENVI 5.1 software
in mode 1. The experimental results of the six image fusion
methods are shown in Fig. 4. To facilitate a comparison, the
details of local regions of the images are exhibited in Fig. 5. By
visually comparing the fused images with the original image,
it can be seen that all the fusion methods can effectively fuse
the LR MS image and the HR PAN image. However, it can be
clearly observed that the GIHS and GS results suffer from seri-
ous spectral distortion compared with the original MS image.
Although the AWLP and PN-TSSC methods are able to main-
tain the spectral information of the original image, some details
are missing and the image is blurred to some degree. In addi-
tion, we can see from Fig. 5(e) that the fusion result of SparseFI
suffers from serious blurring and aliasing distortion. Overall,
the image fusion result by the proposed method is the closest
to the original image. The proposed method not only provides
a high-spatial resolution while preserving the image details, but
also decreases the spectral distortion to a great extent.

The quantitative assessment indexes for the fusion results are
shown in Table I, in which the best results for each quality index
are labeled in bold, and the second-best results for each quality
index are underlined. In this table, B, G, R, and near-infrared
represent the results of the blue, green, red, and near-infrared

——— Proposed
—+—Gs
GiHS
S ——— PN-TSSC
—&— SparseFl
—— AWLP

0.83] y * ‘wa—a—o—‘:i_
\ —_

e ]
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a a
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Fig. 9. Variation of the image fusion performance (Q4 and SAM) as a function
of ar. (a) Q4. (b) SAM.

bands, respectively. We use the average values of all the band
indexes to indicate the image quality.

It can be seen from Table I that the proposed method acquires
the best evaluation results, in terms of CC, RMSE, ERGAS,
SSIM, and ()4, which suggests that the fusion result of the pro-
posed method is the most closely correlated to the original MS
image. In terms of the SAM index, AWLP and the proposed
method perform much better than the other methods from the
aspect of spectral information protection. On the whole, the
quantitative assessment results are consistent with the visual
evaluation, and the proposed method achieves a better fusion
result than the other methods.

C. Experiments With QuickBird Data

In this section, we analyze another group of experimental
results of image fusion with QuickBird data to further reveal the
performance of the proposed algorithm. The QuickBird data set
provides a four-band 2.8-m resolution MS image and a 0.7-m
resolution PAN image. Fig. 6(a) and (b) shows a pair of sim-
ulated QuickBird images with resolutions of 11.2 and 2.8 m,
respectively. The size of the LR MS image in this simulated
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Fig. 10. Real-data experiment with IKONOS data. (a) MS image at a 2.8-m spatial resolution. (b) PAN image at a 0.7-m spatial resolution. (c) GS. (d) GIHS.

(e) AWLP. (f) SparseFI. (g) PN-TSSC. (h) Proposed method.

experiment was 150 x 150, and the corresponding PAN image
was sized 600 x 600, as shown in Fig. 6.

The results of the different image fusion methods are shown
in Fig. 7, and the enlarged images for the same position are
shown in Fig. 8. It can be clearly seen from Fig. 7(b) and (d)
and the enlarged images in Fig. 8(b) and (d) that the GS and
GIHS methods produce serious spectral distortion when com-
pared with all the other methods. The image fusion result by the
AWLP method is acceptable with regard to the spectral charac-
teristic, but it has a little blurring compared with the original
MS images.

It can be observed that the fusion results of the SparseFI and
PN-TSSC methods in Fig. 8(e) and (f) contain serious artifacts.
Outlier pixels in some regions with small objects or fine details
appear in these two images. Overall, it can be seen that the
fusion result by the proposed method is the closest to the orig-
inal image. To sum up, the proposed method provides higher
quality spatial details and decreases the spectral distortion, from
a visual point of view.

The visual interpretation can only show the quality of three
bands of the fusion results. Therefore, we also evaluated the
fusion results for all the MS bands via a comprehensive quanti-
tative evaluation. The quantitative assessment results are shown
in Table II, where the best results of each index are marked
in bold. Here, it can be clearly observed that the proposed
method obtains the best evaluation results for all the bands,
in terms of both CC and SSIM, which illustrates that the pro-
posed method maintains the highest correlation and the least
radiometric distortion between the fusion result and the orig-
inal MS image. For the ERGAS index and the Q4 index, the
proposed method again performs better than the other fusion
methods, as expected. As for the SAM index, the proposed
method again provides the best results. For all the quantitative

TABLE III
QUALITY MEASURES FOR THE DIFFERENT IMAGE FUSION APPROACHES
WITH REAL IKONOS DATA

PN-
GS GIHS AWLP  SparseFl TSSC Proposed

Dy 0.0366 0.0731 0.0552  0.0632 0.0359 0.0298
D, 0.1192 0.1362 0.1018  0.1054 0.0624 0.0398
QNR 0.8486 0.8006 0.8486  0.8381 0.9039 0.9316

Influence of Influence of f3
0.6
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Fig. 11. Plot of the influence of 3 for the IKONOS and QuickBird data sets
(Q4). (a) Q4 with IKONOS data. (b) Q4 with QuickBird data.

indexes in this table, the proposed method performs better than
the other image fusion methods. Overall, the conclusion can
be drawn that the proposed method is suitable for the image
fusion of QuickBird data, and it performs better than the other
state-of-the-art methods.

D. Robustness to the Imagery System MTF

The MTF of the imagery system was investigated in [11],
[13], [62], and [64]. It corresponds to the imagery system
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TABLE IV
QUANTITATIVE ASSESSMENT RESULTS OF THE PROPOSED METHOD WITH DIFFERENT VALUES OF A (A IS FROM 3 x 10% T0 3 x 1011)
FOR THE IKONOS DATA

A 3x10° 5%10° 3x10° 3x107 8x107 3x108 3x10° 3x10%° 3x10M
CCavg 0.9231 0.0.9467 0.9477 0.9483 0.9485 0.9486 0.9484 0.9485 0.9484
SSIM avg 0.9213 0.9433 0.9444 0.9453 0.9455 0.9456 0.9455 0.9455 0.9454
ERGAS 5.5377 4.6698 4.6359 4.5867 4.5756 4.5701 45778 4.5727 4.5807
SAM 6.2832 7.8791 7.7662 7.6715 7.6346 7.6327 7.6380 7.6317 7.6417
Os 0.5958 0.7673 0.7689 0.7695 0.7697 0.7695 0.7696 0.7610 0.7273
RMSE svg 21.8748 18.7518 18.5468 18.3731 18.3186 18.2983 18.3299 18.3093 18.3427
TABLE V

QUANTITATIVE ASSESSMENT RESULTS OF THE PROPOSED METHOD WITH DIFFERENT VALUES OF A (A IS FROM 3 x 102 T0 3 x 107)
FOR THE QUICKBIRD DATA

A 3x10° 8x10° 4x10* 8x10* 3x10° 6x10° 3x10° 6x10° 3x107
CCavg 0.9126 0.9373 0.9639 0.9647 0.9647 0.9579 0.9420 0.5606 0.2850
SSIM avg 0.9024 0.9300 0.9616 0.9611 0.9607 0.9546 0.9586 0.8867 0.8276
ERGAS 2.4349 2.0650 1.5303 1.5815 1.5889 1.6958 1.9354 7.8806 18.6517
SAM 2.2144 2.0392 1.8275 1.8670 1.8732 2.0783 2.9283 3.5370 4.9979
04 0.6180 0.7247 0.8528 0.8732 0.8746 0.8628 0.8727 0.7873 0.7310
RMSE g 27.3442 23.2838 16.9518 17.7782 17.8844 19.3393 22.4210 94.4426 223.8258

module of the Fourier transform of its PSF, and is also usually
considered to obey a Gaussian distribution.

In practical cases, increasing the cutoff of the Nyquist fre-
quency violates the Shannon’s condition and causes aliasing. In
contrast, decreasing the cutoff value reduces the amount of sig-
nal in the pass-band and leads to blurring. The tail of the MTF
function also gives rise to aliasing. Therefore, the cutoff value
must be a tradeoff between the maximum spatial resolution and
minimum aliasing of the sampled signal.

We also studied the robustness of the proposed method to
MTF variation of the imagery system. This experiment was
implemented with the QuickBird data. The cutoff frequency
was the Nyquist frequency, which is equal to (0.125), as shown
in [13]. The simulated PAN and MS images were generated by
applying Gaussian-tailored low-pass filters with the frequency
response at the cutoff Nyquist frequency increasing from 0.1 to
0.6 in steps of 0.05 [65]. Fig. 9 shows the variation of the perfor-
mance ()4 and SAM) of the different approaches as functions
of Qef.

The performances of all the results improve as «..y increases,
and the proposed method provides the best result in terms of Q)4
and SAM. We can see from the diagram that SparseFI and GS
are more sensitive to the aliasing increase than the other meth-
ods. Overall, the proposed method is more robust and obtains a
better result than the other methods.

E. Real-Data Experiment

We also evaluated the proposed method in a real-data exper-
iment. Fig. 10(a) and (b) shows the IKONOS image at a 2.8-m
(MS) and 0.7-m (PAN) spatial resolution, respectively. The D,
D,, and QNR quality assessment indexes were used to eval-
uate the fused image [63]. The results of GS, GIHS, AWLP,
SparseFI, PN-TSSC, and the proposed method are shown in
Fig. 10(c)—(h).

Here, it can be seen that the GIHS method generates spec-
tral distortion, as shown in Fig. 10(d). We can also see from

Fig. 10(c), (e), and (f) that the results of GS, AWLP, and
SparseFI, respectively, contain a little blurring. PN-TSSC and
the proposed method [Fig. 10(g) and (h)] generate an HR MS
image with satisfactory spectral and spatial preservation. The
quality assessment indexes are shown in Table III. Clearly, the
advantage of PN-TSSC and the proposed method is that they
result in very-low-spatial distortion (Ds < 0.1). However, the
proposed method generates better Dy, Dy, and QNR values
than PN-TSSC.

F. Parameter Analysis

The impact of parameters A (14) and /3 (12) in the proposed
method was also investigated. We set parameter \ as a constant,
and the trend graphs of ()4 with respect to parameter (3 for the
IKONOS and QuickBird data sets are shown in Fig. 11(a) and
(b), respectively. The results of the two groups of experiments
show that the proposed method can reach a stable performance
when parameter [ is set as [0.06, 0.36] and [0.8, 1.3] for the
IKONOS and QuickBird data sets, respectively. The difference
can be explained by the fact that the two data sets have different
spectral characteristics. It can also be seen from Fig. 11 that
the proposed method has a wide stable range with regard to
parameter /3.

We also fixed the optimal /3 value and explored the influence
of parameter \. The influence of regularization parameter \ on
the IKONOS and QuickBird data sets is shown in Tables IV
and V, respectively. For simplicity, the CCayg, SSIMAaye
(RMSEavg, CCavg, and SSIM s, are the average of RMSE,
CC, and SSIM, respectively), ERGAS, SAM, and ()4 indexes
are used to evaluate the performance. Here, it can be observed
that all the indexes are stable over a wide range for both the
IKONOS and QuickBird data sets in terms of .

G. Time Cost

Except for the GS method, all the other methods were imple-
mented in MATLAB 2012a. The personal computer used was a
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TABLE VI
TIME COSTS OF THE DIFFERENT IMAGE FUSION METHODS FOR THE
256 x 256 IKONOS IMAGE

Method GS GIHS AWLP SparseFI PN-TSSC Proposed
Time (s) 0.03 0.07 0.03 0.2 0.6785 85
TABLE VII

TIME COSTS OF THE DIFFERENT IMAGE FUSION METHODS FOR THE
600 X 600 QUICKBIRD IMAGE

Method
Time (s)

GS
2.08

GIHS AWLP SparseFI
0.21 0.48 21.85

PN-TSSC  Proposed
46.89 720

DELL T1500. The central processing unit (CPU) was a dual-
core Intel Core i3 540 at 3.07 GHz. The RAM was 6 GB
and the operating system was Windows 7 64-bit. The running
times of all the methods in the experiments with the IKONOS
and QuickBird data sets are provided in Tables VI and VII,
respectively.

From Tables VI and VII, it can be clearly seen that the sparse
regularization based fusion methods are time-consuming due
to the large computational complexity of the ¢;-norm mini-
mization problem. Because the proposed method takes more
time than the other methods, parallel processing and other
acceleration strategies will be investigated in our future work.

V. CONCLUSION

This paper has presented a novel remote sensing image
fusion method based on the analysis sparse model. With the
PAN and MS image degradation model, the remote sensing
image fusion task is formulated as an ill-posed inverse problem.
An image fusion model which is based on a sparse regulariza-
tion method is proposed to recover the HR MS image from the
observed measurements. In our observation model, the MTF
of the imagery system is taken into account, which makes
the method more practical for real remote sensing applica-
tions. During the operator learning stage, the analysis operator
for each band is trained by the GOAL algorithm with the
upsampled LR MS image and the PAN image. These analysis
operators are then combined into one operator for the LR MS
image. With this analysis operator, the arising optimization task
for the image fusion is solved by the conjugate gradient method.
The proposed method was compared with the state-of-the-art
image fusion techniques on both IKONOS and QuickBird data.
The experimental results suggest that the proposed method is
competitive in both spatial and spectral quality. The experimen-
tal results also show that the parameters of the proposed method
are stable. However, the proposed scheme takes more time than
the traditional methods. Therefore, in the future, we will focus
on acceleration strategies to solve this problem.
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